DOFMaster
for Windows On-line Depth of Field Calculator DOFMaster for Mobile Devices On-line Depth of Field Table Hyperfocal Distance Chart Articles FAQ Recommended Books Support Contact Links Home As an Amazon Associate I earn from qualifying purchases. |
exposed areas, contain less water and dry faster than thin negatives. When you think about this for a moment, you can see that since the heavily exposed and lightly exposed areas are distributed randomly throughout the average negative, drying occurs rapidly in the dense slowly in the thin or unexposed areas. Obviously, then, film does not dry uniformly. Ideally, these processes should take place simultaneously and at the same rate. However, when the surface moisture evaporates too rapidly, the surface becomes hard, and the internal moisture is unable to escape it. In addition, when drying is too rapid, the outer surface shrinks while the rest of the gelatin layer is in an expanded state. This causes strains that can have a harmful effect upon the emulsion. circulates, the damp air moves away from the surface of the wet film and replaces it with dry air that permits the drying process to continue. This is the principle behind the air impingement dryers currently in use. Heated air not move, air can become heated and rapidly reach a state of equilibrium with the moist film, and drying stops. wet film. The warm, dry air picks up moisture and moves and the process continues until the film is dry. The rate of drying is controlled by adjusting the velocity, temperature, and humidity of the air in the drying chamber. In hot and humid climates where the air is saturated with moisture, the air must be passed through a dehumidifier before it enters the drying chamber. When this is not done, the film does not dry. In dry climates, you must reduce both the heat and the air velocity to prevent overdrying. introduces strains in the direction of the dry areas. As a film continues to dry, the strains gradually begin to equalize, and the film, when dried properly, ultimately lies flat. The surface is not moist to the touch, but it is firm and soft enough that flexing does not damage it. If become brittle. whether or not the film has a gelatin backing. Naturally, the thicker the layer, the longer the drying time. A gelatin backing takes time to dry, but it introduces an opposing curl and causes the dried negative to lie quite flat. the darkroom is large or small, certain essentials are necessary for good quality processing. and floors that are spotted with dried chemicals are harmful to photographic images. Navy photo lab equipment, therefore, must always be spotlessly clean. place." There should be adequate and correct safelights placed at recommended working distances. Only necessary sensitized material should be in the darkroom. Temperatures in the lab should be maintained as closely as possible to the normal processing temperature-about 70°F to 75°F. The well-equipped darkroom should contain the following items: sink, graduates, required chemicals, waterproof aprons to protect clothing, clean towels, accurate thermometer and timer, and the necessary film hangers, trays, reels, and tanks. All darkrooms should be well stocked with prepared chemicals in containers that are labeled properly. In general, good photographic quality demands that all work must be conducted in a clean, orderly, and systematic manner. Navy labs are factory-made and meet all the requirements for photographic work Sinks should be big enough and built so they drain thoroughly. The sink should have duckbords to keep trays and tanks off the bottom and to permit water to circulate under and around the solution tanks to maintain correct and constant temperatures. Sinks, also, should have a mixing valve to control the temperature of the water in the sink and a Basic Photography Course |
As an Amazon Associate I earn from qualifying purchases. |
WWW.DOFMASTER.COM
© 2006 Don Fleming. All rights reserved. |